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Computational Problems in S-Function Theory 

By P. A. Morris 

Abstract. In this paper we discuss some computational problems associated with Schur- 
functions. A well-known algorithm for the ordinary product is described and adapted for a 
computer. A theorem of Todd is discussed in the same way, and these methods are combined 
to produce a general program for the plethysm (wreath product) of two S-functions. 

1. Introduction. In the theory of the symmetric group and of its representations, 
Schur-functions, or S-functions, are defined either in terms of the homogeneous 
product-sum symmetric functions h, or in terms of the characters of the symmetric 
group ([3], [4]). Given a number n, to each partition (X) = (X1, X2,, X**A) of n there 
corresponds an S-function { X} { XA, X2, ... , X* } defined, in terms of the functions 
hr, by 

{X} {X1, X2, * . * XD} = Ih),, + t? 

For example, the S-function 

h3 h4 h5 h3 h4 h5 

{3, 2, 1} = hi h2 h3= h1 h2 h3 

h1 ho hi 0 1 hi 

(since ho = 1, hr = 0 when r < 0). 
We shall always write the S-functions with X, ? X2 ? ... > X*n > 0. In that case 

we call the number of nonzero X's the length of the S-function. If the length is one, we 
say that the S-function is one-part and we have 

{X1} = jhxAI = hx,. 
Thus, for example {4} = h4. 

S-functions have long been of great importance in invariant theory [3]. More 
recently, they have been used in the applications of group theory to physics (e.g. [1], 
[9]), and in enumeration problems in combinatorics. The combinatorial applications 
are well reviewed by Read [8]. Most of these applications depend on certain operations 
defined on S-functions, and whether or not they can be readily performed. We will 
consider two of these operations, the ordinary product and the plethysm (wreath 
product). 

2. Ordinary Product. If we multiply two S-functions (this is the ordinary 
algebraic multiplication of two symmetric functions), the result can be expressed as a 
linear combination of S-functions: 
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E= I P^{V}* 
(V) 

There is a convenient algorithm for the coefficients r in this ordinary product. An 
Algol implementation of this rule has been described [2]; here we give a description of 
the algorithm and discuss an approach to programming it. The result is essentially 
the same as that given in [2]. 

First we define two concepts: the Young diagram, and lattice permutations. 
Let (X1, X2, ... * Xn) Xi > X2 > X3 _ * _ Xn > be a partition of n. The Young 

diagram consists of n rows of some convenient symbol, say 'x', the ith row containing 
Xi symbols, the rows being left-justified. Thus the Young diagram of {4, 3, 1 } is 

x x x x 

x x x 

x 
The diagram is regular if the length of successive rows is nonincreasing. 

A lattice permutation of the Iu1 symbols a, /2 symbols (, A3 symbols y, ... is a 
permutation such that at any stage the number of a's ? number of Ot's ? number of 
-'s, etc. 

For example (reading left to right), aaf3xyaf3 is a lattice permutation of a3 32 'y, 

while af-yoaa is not, since at the fourth stage we have aoy( in which the number of 
3's is 2, while the number of a's is 1. 

THEOREM 1 (LITTLEWOOD-RICHARDSON). The S-functions of { X1, X2, . * X>'m} 

IBS AU2T ... * *sn} are those which correspond to the Young tableaux that can be built by 
adding to a Young tableau corresponding to { XI}, ,1 identical symbols a, A2 identical 
symbols (3, JA3 identical symbols y, etc., subject to two conditions: 

Firstly, after the addition of each set of identical symbols, we must have a regular 
Young tableau with no two identical symbols in the same column. 

Secondly, if the total set of added symbols is readfrom right to left in the consecutive 
rows of the final tableau, we must obtain a lattice permutation of a 1f32L * y .. 

Thus, for the product { 3, 2} { 2, 1 }, we obtain 

X XX a a x x a a X XX a X XX a XX x 

xx x x X x a 3 X X a x x( 

(3 (3 a 

X XX a XXX a x x x x x x x 

XX X X X X a X X a XX 

(x a a A a a a 

so that 

{3, 2}{2, 11 = {5, 3} + {5, 2, 1} + {4, 4} + 2{4, 3, 1} 

+ {4, 2, 2} + {4, 2, 1, 1} 

+ {3, 3, 2} + {3, 3, 1, 1} 

+ {3, 2, 2, 11. 
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We shall describe a procedure for the product { X} { M }, where { X { I 1, I 2 * m}A 

JAI = {I i, * A,* I, and use the product calculated above as an example. 
We work with partitions (so that the S-function {3, 2} is represented by the num- 

bers 3, 2), and control regularity by calculating associated difference numbers, defined 
for the partition (X1, X2, , X.) by di = t- Xi+1 (i = 1,2, , n- 1), dn = 

In essence, the method is to apply the first symbol (a in the example) to the Young 
diagram of { X}. This gives a number of functions, to each of which we apply the 
second symbol, and obtain, in a cascading process, a string of S-functions. We 
continue in this way until there are no more symbols. 

Note that the maximum possible length for an S-function of the product is m + n. 
We therefore begin by 'stretching' the S-function, i.e., adding zeroes to the partition 
representing { X} to give (X1, X2, . . * Xm, 0? 0O* . * 0). 

Difference numbers are calculated for each added symbol, so that it is necessary to 
reference the difference numbers by two subscripts. We shall call the jth difference 
number for the ith added symbol, di i. 

In our example, (3, 2) is first 'stretched' to (3, 2, 0, 0) and the first difference num- 
bers are 

di, = 1, d12 = 2, d13 = 0, d14 = 0. 

Addition of the first symbol will give us a number of products. We generate the 
first of these as (X1 + I,1, X2, ... * Xmp 0, 0, ... , 0). In our example, this is (5, 2, 0, 0). 
The procedure for obtaining other partitions is simple and we will confine ourselves 
to an example. 

We repeatedly subtract 1 from the first number and add 1 to the second, provided 
that the result of the subtraction is not less than the original X, i.e., 3, and that the 
total added to the second number does not exceed dii. 

In this way we obtain from (5, 2, 0, 0): (4, 3, 0, 0). 
We now use these partitions for the next stage: Subtract 1 from the first element and 

add it to the third, continuing as above until we arrive at the original 3 or until the 
difference number d12 is exceeded. We obtain 

from (5, 2, 0, 0): (4, 2, 1, 0), (3, 2, 2, 0) 

from (4, 3, 0, 0): (3, 3, 1, 0). 

This completes addition of the first symbol since d13 = 0. 
When we come to the addition of subsequent symbols, however, we have to recall 

the restriction to lattice permutations. We deal with this problem in the following way: 
For the addition of the ith symbol (i > 1) let kri be the number of (i - 1)th symbols 
added to the rth row, with kr0 = Xr, and set 

p 

cp= IE kri, Cl = 0. 
r=1 

Put ep = n=l (kp i- kP+1 ), co = 0, and let di i = min(c7, Q- i). 
This modified difference vector will now ensure that both the regularity and the 

lattice conditions are observed. 
For example, in our product { 3, 2} { 2, 1 }, addition for the first symbol a gives the 

following tableaux: 
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X XX a a X X X a X XX a X X X x x x 

X X XX Ca X X X X a X x 

a a a a 

For the first tableau k10 = 3, k120 = 2, k30 = 0, k40 = 0, kil = 2, k2l = 0, k3l = 0, 
k4l = 0. 

Thus cl = 0, c2 = 2, c3 = 2, c4 = 2, , = 3, c2 = 2, c3 = 0, C4 = 0 so that d2l = O0 

d22 = 2, d23 = 2. 
Using these differences numbers, we add O3's to the first tableau, thereby creating a 

number of new tableaux. We then move on to the second tableau, 

x x a 

X X a 

and repeat the process. 
Some collating has to be done: An S-function such as {4, 3, 1 } is produced in two 

ways, once as 

x x x a X x xa 

x x ( and once as x x a 

a ( 

For this reason, an inversion of the process is to be recommended. One can produce 
partitions in lexicographic order (i.e., in order as numbers, so that for example (11, 2) 
precedes (10, 3) since 112 > 103) ([5], [6]). Now the S-functions occuring in { X} { ,}, 
where (X) is a partition of n and (IA) a partition of m, correspond to partitions of m + n. 
Thus one produces one such partition at a time, and using a slight variation of the 
above procedure, finds how many times it occurs in the product. Then on to the next 
partition, and so on, until there are no more partitions. At the end, we have a list of 
partitions in lexicographic order together with their coefficient ri. 

3. The Plethysm (Wreath Product). The plethysm was first defined by Little- 
wood in the context of invariant matrices (see [3], [4]) and representations of the full 
linear group. An equivalent definition [8] is of the wreath product, defined for any two 
polynomials A and B in indeterminates si, s2, * * *, sn: A[B] is the polynomial we get by 
replacing every S, in A (r = 1, 2, * * ) by the polynomial obtained from B by multi- 
plying the subscript of each of its indeterminates by r. Thus if 

A = 1(s 2+ SA) B = (S3 + 2S3) 

the 'substitution' is effected by replacing 

s1 by 13(S3 + 2S3) and s2 by I 
(S3 + 2s6) 

in A. The result is 

2 {I (S3 + 2S3)2 + I(S2 + 2S6)}. 

Now every S-function, being a symmetric function, can be expressed as a poly- 
nomial in the power-sum symmetric function Sr In this way we define the wreath 
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product { X} [{,} ] (in plethysm notation, {,1} 0 { X} ) of { X} and {I} . 
The result is reconverted into a sum of S-functions: { X}[{,}] E cx{}, 

where the cX, are numerical coefficients. 
It can be shown, if { X} is a partition of n and {, I a partition of m, that c,, = 0 

unless { v} is a partition of in. Note that the product is noncommutative. We have, 
however, 

({X} + {p})[{v}] = {X}[{v}] + {} [{v}] 

and 

{X} {iy} [{v} ] =- X {}] a {}] 

The problem of determining the coefficients cx,, is difficult. In many special 
cases there are a number of useful general theorems, a survey of which will be found 
in [6]. In other special cases, methods well suited to a computer have been derived 
([6], [7]). We shall follow here a general method discussed in [8], and will confine 
ourselves to wreath products of one-part S-functions. For these we will use the 
notation hm[hn] (since hm = { m). 

4. The Plethysm sm[hn] = In I 0 Sm,. As a preliminary, we discuss a theorem of 
Todd [11] for the special wreath product sm[hn] where Sm denotes the power-sum 
symmetric function. A special case of Todd's theorem can be reconstrued as follows: 

THEOREM 2. Let o- (oC, oT2, * * rm) be a partition of mn into at most m parts. 
Let (n, n2, .*. .9 nm) be a partition of n into at most m parts such that ri = 

- m(n, - 1) - i satisfies 0 _ r, < m- 1. Let a, be the sign of the permutation 

ri, r2, * * rn 

\m- 1, m-25,. * ,0/ 

(or zero if the ri are not a permutation of (m - 1, m - 2, ... , 0)). Then sm[hn] = 

E 6a{LT}. 
To program this efficiently we produce, one at a time, partitions (CT) of mn into 

m parts. We need also the partition (n1, n2, .i.., no) of n. We can show that, if ni 
exists, then ni = [(oI + m - i)/m] where brackets denote "integer part." For if we put 

O'i + M -- iF T + m- 
= 

t = m- m > i, then ri < m. 
t m Lm 

If the ni so chosen are in fact a partition of n then 

Z ri = E (oa - m(ni - 1)- i) 

= nm - mn+ m2 - m(m+ 1) 

= 0+ 1+2+ +(m-1). 

If not, then at least two of the ri must be equal. Hence we calculate ci i = ri -ri 
(i = 1, 2, ... , m - 1; j > i). Let k be the number of values for which ci i < 0. Then 

= (-1)k if no cii = O. 

= 0 otherwise. 
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Thus, provided we have a program to produce partitions, calculating the expansion 
is not difficult. 

Todd (ibid.) also showed that there exists a 1-1 correspondence between those 
S-functions {0I, 02, * ., a.} of {n} 0(D sm for which am > 0 and the S-functions of 

In - 11 ( Sm.. For the S-functions of {n} 0(i Sm for which am = 0, there exists a 1-1 

correspondence with the S-functions of {n} 0(D Sm-i. From this we derive the following 

interesting theorem: 
THEOREM 3. Let {fn} 0 Sm = Via IOai. Let u(n, m) be the number of nonzero Gia 

Then 

u(n, m)= (n= + - 1) 

Proof. Todd's result implies 

u(n, m) = u(n- 1, m) + u(n, m- 1). 

This remains true if as usual we define u(n, m) = 0 if n < 0 or m < 0; u(n, 0) = 1 
if n > 0. However, we define u(O, m) = 0 for all m. 

Also, since { n } (0 s1 = {n }, u(n, 1) = 1. Write 

Pm(X) = E u(n, m)xn, 
n=O 

Pm(X) = Pmi(X) + XPm(X), 

Pm(X) = Pm. - (X)/(I - x). 

Now 
co co 

P1(x) = E u(n, 1)x , = a = 1/(1 - X). 
n=0 n=O 

Therefore 

Pm(X) 
- ) (m +r- ID) 

so that u(n, m), the coefficient of x' in Pm(x), is (n+m"1) which proves the theorem. 
This result is very useful in checking expansions. Use of a similar procedure gives 

the number of functions in {n} I0 s,. with a given sign. 

5. The Plethysm hm[hn]. Now that we have the functions Sm[hn], it is possible 

to obtain recursively the general plethysm hm[h.] A well-known relation [3] is 
m 

mhm = E Srhm-tr 
r=1 

Combining this with the distributive properties of the plethysm [4], we get 

mfhm[hn] = E Sr[hn]hm-r[hn]. 
r=1 

Assume that we have calculated and stored the functions sr[hn] for r = 1, 2, * *, in. 

To begin, we know ho[hn] = {O}, h1[hn] = {n}. For example, since si[h2] = {2}, 
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S2[h2] = {4} - {3, 11 + {2, 2} and h,[h2] = {2}, we have 2h2[h2J = (12}{2}) 
+ ({4} - {3, 1} + {2, 2})({O}). The full expansion is now obtained by multiplying 
the relevant S-functions. 

In practice, as explained at the end of Section 3, it is better to take each partition 
of mn in turn and find its total coefficient. Thus, in the above example, we would 
begin with {4}, find that it occurs once in {2} {2}, once in {4} {0} and not elsewhere, 
so that the coefficient of {4} in h2[h2] is 1. 

The advantages of this variation are even more marked by noting that it is easy 
to tell when a function does not occur in a given product: if it is too long, too 'broad', 
too 'short' or too 'thin'. In {2, 2} {0} the function {4} cannot occur since it is too 
'short'; it is of length 1 whereas each product should be of length 2. 

In either approach, some preliminary sorting is advisable to avoid duplication 
of multiplication. Thus in obtaining the expansion h3[h3], since 

s2[h3] = 16} + 15, 11 + 14, 2} + 13, 3}, s1[h3] = 131, 
h2[h3] = 16} + 14, 2}, hi[h3] = 13}, 

{6} 13} occurs in both s2[h3]hl[h3] and s1[h3]h2[h3J. 

6. Conclusion. The procedures outlined above have all been programmed 
and tables of the plethysm obtained for hm[hn] in the following cases: n = 4 or 5, 
m < 6; n = 6, 7 or 8, m < 5. Different methods ([6], [7]) were used to produce hm[h3], 
m ? 10. These have all been included as a large appendix to [6]. 
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